

RX-003-1016001

Seat No.

B. Sc. (Sem. VI) (CBCS) Examination

March - 2019

Mathematics: Paper - 8

(Graph Theory & Complex Analysis - II)
(New Course)

Faculty Code: 003

Subject Code: 1016001

Time: $2\frac{1}{2}$ Hours] [Total Marks: 70]

Instructions:

- (1) All questions are compulsory.
- (2) Figures on the right side indicate marks.
- 1 (a) Answer the following questions briefly:

4

- (1) Define: Simple graph.
- (2) Write the Nullity of connected graph with n vertices and e edges.
- (3) Find the number of pendant vertices in any binary tree with 13 vertices.
- (4) Find the total number of edges in a complete graph with 5 vertices.
- (b) Attempt any **one**:

 $\mathbf{2}$

- (1) Define: Null graph, Pendant vertex.
- (2) What is the number of vertices in the complete graph K_n , if it has 45 edges?
- (c) Attempt any **one**:

3

- (1) State and prove first theorem of Graph theory.
- (2) Prove that the number of vertices n is a binary tree is always odd.

(d)	Attempt	anv	one	
(u)	Aucmpu	any	OHE	

(1)

Prove that a simple graph with n vertices and K

components can have at $\frac{(n-K)(n-K+1)}{2}$

(2)Prove that A graph is a tree iff it is minimally connected.

2 Answer the following questions briefly: (a)

4

5

- Define: Separable Graph.
- Define: Chromatic number of graph.
- (3)Kuratowski's second graph K_{3,3} has _____ edges.
- (4)Define: Acyclic digraphs.
- (b) Attempt any one:

2

- Find the number of edges of a connected planar graph with 4 vertices and 4 regions.
- Write the chromatic number of null graph and (2)complete graph K_n.
- (c) Attempt any one:

3

- If G is a simple, connected planar graph with f regions, n vertices and e edges (e > 2) then prove that
 - $e \ge \frac{3}{2}f$ (i)
 - $e \leq 3n 6$
- (2)Prove that every tree with two or more vertices is 2-chromatic.
- (d) Attempt any one:

5

- If G is a graph with n vertices, e-edges, f-faces and *K* components then prove that n-e+f=K+1.
- (2)Define path matrix and state is properties.
- 3 Answer the following questions briefly:

4

- Define: Bilinear mapping.
- (2)Write the critical points of bilinear transformation

$$W = \frac{az+b}{cz+d}.$$

(3)Find fixed point of the bilinear transformation

$$W = \frac{3Z - 4}{Z - 1}$$

The points which coincide with their transformation **(4)** are called

(b) Attempt any one:

- 2
- (1) Show that $W = \frac{az+b}{cz+d}$ is conformal mapping.
- (2) Show that x + y = 2 transform into the parabola $u^2 = -8(v-2)$ under the transformation $W = Z^2$.
- (c) Attempt any one:

- 3
- (1) Prove that the transformation $W = 2Z + Z^2$ maps the unit circle |Z| = 1 of Z-plane into a cardoide in W-plane.
- (2) Find the bilinear transformation which maps $Z_1 = \infty, Z_2 = i, Z_3 = 0$ onto $W_1 = 0, W_2 = i$ and $W_3 = \infty$.
- (d) Attempt any one:

- 5
- (1) Show that the composition of two bilinear transformation is again a bilinear transformation.
- (2) Prove that the transformation $W = \frac{1}{Z}$ maps the circle |Z 3| = 5 of Z-plane into a circle $|W + \frac{3}{16}| = \frac{5}{16}$ of W-plane.
- 4 (a) Answer the following questions briefly:

4

- (1) Define: Complex Series.
- (2) Find Radius of convergence for the series $\sum_{n=1}^{\infty} n! Z^n$.
- (3) Write expansion of SinhZ in Maclaurian series.
- (4) State Maclaurian series of an analytic function f(Z).
- (b) Attempt any **one**:

- $\mathbf{2}$
- (1) Find region of convergence and radius of convergence of series $\sum_{1}^{\infty} \frac{Z^{n}}{3^{n}-1}.$
- (2) Expand $\frac{1}{1+Z}$ in Maclaurian's series.
- (c) Attempt any one:

3

- (1) Prove that $e^{z} = e + e \sum_{n=1}^{\infty} \frac{(Z-1)^{n}}{n!}$.
- (2) If 0 < |Z| < 4 then prove that $\frac{1}{4Z Z^2} = \sum_{n=0}^{\infty} \frac{Z^{n-1}}{4^{n+1}}$.

(d) Attempt any one:

- 5
- (1) State and prove Taylor's infinite series of an analytic function f(Z).
- (2) State and prove necessary and sufficient condition for complex sequence $\{Z_n\}$ to be convergent.
- **5** (a) Answer the following questions briefly:

4

- (1) Define: Residue of f(z) at pole Z_0 .
- (2) Find Residue of $\frac{\cos Z}{Z}$ at Z = 0.
- (3) Find Singular points of $\frac{\cos \pi Z}{(Z-1)(Z-2)}$.
- (4) Which contour is used to integrate $\int_{0}^{\infty} \frac{dx}{1+x^2}.$
- (b) Attempt any **one**:

2

- (1) Derive formula for finding residue of f(z) at simple pole Z_0 .
- (2) Evaluate $\int_{C} \frac{5Z-2}{Z(Z-1)} dz \text{ where } C: |Z| = 2.$
- (c) Attempt any one:

3

- (1) Evaluate $\int_{C} \frac{3Z^2 + 2}{(Z 1)(Z^2 + 9)} dZ$ where C: |Z| = 2.
- (2) Find: Res $\left(\frac{1-e^Z}{Z^4}, 0\right)$.
- (d) Attempt any one:

5

(1) Using residue theorem prove that

$$\int_{-\infty}^{\infty} \frac{dx}{\left(1+x^2\right)^3} = \frac{3\pi}{8}$$

(2) State and prove Cauchy-Residue theorem.